Unitary recordings of TRP and TRPL channels from isolated Drosophila retinal photoreceptor rhabdomeres: activation by light and lipids.

نویسندگان

  • Ricardo Delgado
  • Juan Bacigalupo
چکیده

Transient receptor potential (TRP) channels play key roles in sensory transduction. The TRP family founding members, the Drosophila light-dependent channels, were previously studied under voltage clamp, but had not been characterized in intact rhabdomeres at single-channel level. We report patch-clamp recordings from intact isolated photoreceptors of wt and mutant flies lacking TRP (trp(343)), TRPL (trpl(302)), or both channels (trp(313); trpl(302)). Unitary currents were activated by light in rhabdomere-attached patches. In excised rhabdomeral patches, the channels were directly activated by molecules implicated in phototransduction, such as diacylglycerol and polyunsaturated fatty acids. Currents recorded from trpl photoreceptors are blocked by external Ca(2+), Mg(2+) (1 mM), and La(3+) (20 muM), whereas those from trp photoreceptors are not. Rhabdomeric patches lacked voltage-dependent activity. Patches from trp;trpl mutants were devoid of channels. These characteristics match the macroscopic conductances, suggesting that the unitary currents from Drosophila trpl and trp photoreceptors correspond to TRP and TRPL.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constitutive Activity of the Light-Sensitive Channels TRP and TRPL in the Drosophila Diacylglycerol Kinase Mutant, rdgA

Mutations in the Drosophila retinal degeneration A (rdgA) gene, which encodes diacylglycerol kinase (DGK), result in early onset retinal degeneration and blindness. Whole-cell recordings revealed that light-sensitive Ca2+ channels encoded by the trp gene were constitutively active in rdgA photoreceptors. Early degeneration was rescued in rdgA;trp double mutants, lacking TRP channels; however, t...

متن کامل

Phenotypes of trpl mutants and interactions between the transient receptor potential (TRP) and TRP-like channels in Drosophila.

The trp and trpl genes are thought to encode two classes of light-activated ion channels in Drosophila. A previous report indicated that a null trpl mutant does not display any mutant phenotype. This lack of detectable mutant phenotypes made it difficult to suggest functions for the transient receptor potential-like (TRPL) channel in photoreceptor responses. Here, the properties of trpl photore...

متن کامل

Coassembly of TRP and TRPL Produces a Distinct Store-Operated Conductance

The Drosophila retinal-specific protein, TRP (transient receptor potential), is the founding member of a family of store-operated channels (SOCs) conserved from C. elegans to humans. In vitro studies indicate that TRP is a SOC, but that the related retinal protein, TRPL, is constitutively active. In the current work, we report that coexpression of TRP and TRPL leads to a store-operated, outward...

متن کامل

TRP, TRPL and Cacophony Channels Mediate Ca2+ Influx and Exocytosis in Photoreceptors Axons in Drosophila

In Drosophila photoreceptors Ca(2+)-permeable channels TRP and TRPL are the targets of phototransduction, occurring in photosensitive microvilli and mediated by a phospholipase C (PLC) pathway. Using a novel Drosophila brain slice preparation, we studied the distribution and physiological properties of TRP and TRPL in the lamina of the visual system. Immunohistochemical images revealed consider...

متن کامل

Subcellular translocation of the eGFP-tagged TRPL channel in Drosophila photoreceptors requires activation of the phototransduction cascade.

Signal-mediated translocation of transient receptor potential (TRP) channels is a novel mechanism to fine tune a variety of signaling pathways including neuronal path finding and Drosophila photoreception. In Drosophila phototransduction the cation channels TRP and TRP-like (TRPL) are the targets of a prototypical G protein-coupled signaling pathway. We have recently found that the TRPL channel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 101 5  شماره 

صفحات  -

تاریخ انتشار 2009